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Chapter I    Exterior Algebra 

Introduction 

This  report will bring together several mathematical  topics  which 

seem to be relevant  to  the treatment of nonlinear networks.     The main 

goal will be  to discuss  some stability theorems  recently obtained by 

Brayton and Moser  [l].     Before  reaching  this goal,  we shall present 

some  exterior,   or Grassman algebra,   some  algebraic  topology,  some 

theorems  about electrical networks,   and a  few remarks  about  Liapunov 

stability.     Of course,   the final results   could be obtained more directly 

without  the  excursions  into exterior algebra or algebraic   topology. 

However,   since these topics do give  some  additional insight,  it was 

thought worthwhile  to include  them.       Because  there  are many places 

where a  rigorous  and more complete  treatment may be  found,   the approach 

throughout has been intentionally kept to  a verv elementary and a very- 

intuitive level. 

Linear Spaces 

We  shall begin with a discussion of  the algebra  of three-dimensional 

vectors.     Mathematicians  have  learned that it is more important  to  know 

how  things behave,   than  to know what they are.     One well-known fact 

about the behavior of vectors  is  that they can be added,   that is,   two 

vectors     a    and    b     can be combined  to  form a third  vector which is 

called  their  sum and which is written    a  + b.     The operation by which the 

sum is   formed has   the following properties: 

1.       The associaoive property,   that  is,     a +  (b  + c)   =  (a + b)   + c; 



2.       a neutral  element,  written     0,     exists  such that  for all 

vectors     a,     we have    a+0  =0+a=a; 

3-        every vector    a    has  an inverse element     - a    such  that 

a+(-a)   =   (-a)+a = 0; 

U.       the comimitative property,   that is,     a+b=b+a. 

These properties   are  evident  from the geometrical definition of 

addition by the Parallelogram Law which is   illustrated  in Figure 1. 

Any  set  of  elements   for which  an  operation   such  as     +     can be  carried 

out,   and   for which  the  properties     1,2,3,     are  satisfied   is   called a 

group.     If Property 4- is  also satisfied,   the group is  said   to be  com- 

mutative. 

Besides  addition,   there is  another operation possible with vectors, 

namely multiplication with a scalar.     Let us  denote scalars  by Greek 

letters;   then the operation  of multiplying by a scalar has   the following 

properties: 

5.        a(a  + b)   =  aa +  ab; 6.        (a  + ß)a =  aa + ßa; 

7.        a(ßa)   =   (aß)a; 8.       la  = a. 



Any set of elements  for which an operation having  the properties 

1,2,3,  and  k can be defined,  and  for which an operation having  the 

properties   5,6,7,   and  8  can be defined  is  called a linear space,   or a 

linear vector space.     The elements     a..,a  , ...,a       in a linear space are 

said  to be  linearly Independent If a  relation such as 

anan   + a„a„  +•••+ a a    =0 11 2 2 n n 

implies that a. = a_ = ••• = a  =0.  If the elements  a.,a„,...,a r 12        n 1' 2'   ' n 

are not linearly independent, they are said to be linearly dependent. 

The geometrical significance of linear independence is clear.  One 

vector is linearly Independent If, and only if, it is not the zero vector. 

Two vectors are linearly Independent if, and only If, they do not lie in 

the same line.  Three vectors are linearly Independent If, and only if, 

they do not lie in the same plane. 

The vectors  a.,,a„,...,a  are said to form a basis of the linear 
1' 2     n   

space If every element of the space can be expressed uniquely as a linear 

combination of the basis, that Is, given any element x In the linear 

space, there exists a unique sat of scalars  a1,a„,...,a  such that 

x = a., a. + a_a„ +•••+ a a . 
11   2 2       n n 

The number of vectors In the basis is called the dimension of the space. 

The space of geometry and physics obviously has dimension three because 

every vector can be expressed uniquely as a linear combination of the 

-+-»■—»■ 
fundamental i,j,k vectors. 



ßivectors 

Besides the operations of addition and of multiplying by a scalar, 

there are other vector operations possible, namely the operations of 

multiplying two vectors together to obtain the dot product and the cross 

product.  In this section we shall introduce a third type of product, 

the exterior or wedge product.  The wedge product is very closely related 

to the vector product in a three-dimensional space.  However, in higher 

dimensional spaces, the vector product does not exist but the wedge product 

always exists.  Also, the wedge product has the associative property 

which the vector product does not. 

We shall introduce the wedge product geometrically.  A vector has 

the geometrical significance of a directed line segment which has a magnitude, 

its length, and a direction.  Consider a parallelogram (see Figure 2)   having 

the vectors  a and b as sides.  This parallelogram has a magnitude. 

its area, but we shall see that it is useful to assign to the parallelo- 

gram also an orientation, that is, a sense or direction in which the sides 

are traversed.  To see the need for an orientation, consider a triangle 



(see Figure 3) whose area we shall denote by ABC. Let 0 be a point 

Figure 3 

inside the triangle, then 

ABC = ÖÄB + ÖBC" + OCA. 

However, if the point 0  is outside the triangle as in Figure 4-, 

(1) 

Figure  U 

then  the  equation   (l)   is   no  longer true.     Instead,   we  have 

ABC  - OÄB   - Ö3C  + OGA. (2) 

It would certainly be convenient to be able to use equation (l) no 

matter where 0  is placed.  This can be done if we agree that an area 

is to be considered positive or negative according as its vertices are 

described in a counter-clockwise or a clockwise order. For example, 

ABC will denote the positive number equal to the magnitude of the area 

of the triangle in Figure 3 or Figure L,,  whereas ACB will denote the 

negative number whose absolute value is equal to the magnitude of the 

area of the triangle.  With this interpretation, equation (l) Is valid 
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for both Figures 3 and U,  because in Figure 3  OBC describes the triangle 

in a counter-clockwise sense and thus OBC represents a positive number, 

whereas in Figure U    OBC describes the triangle in a clockwise sense 

and thus OBC represents a negative number.  Henceforth, we shall con- 

sider all areas to be oriented. 

Just as two vectors are considered equal If they have the same 

length and are parallel in the same direction, so we shall consider two 

parallelograms equal if they have equal areas, the same orientation, and 

lie in the same or parallel planes.  We shall say these parallelograms 

represent a bivector.  We shall denote by aAb a bivector such as the 

one represented by the parallelogram in Figure 2, if the orientation of 

the parallelogram is such that the vector a must be rotated in the 

counter-clockwise sense to coincide with the vector b.  However, if this 

parallelogram is oriented in the clockwise sense, we denote the bivector 

by  bAa.   Because the only difference between the biveotors is in their 

orientation or, what is equivalent, in the sign attached to the area, we 

shall write 

aAb = - bAa. (3) 

Thus, the multiplication indicated in the wedge product is anti-commutative 

just as is the multiplication in the cross product.  Notice that since 

aAa = - aAa,  we must have  2aAa =0, or aAe =0.  We conclude that 

the wedge product of a vector with itself is always zero. 

It should be emphasized that a wedge product of two vectors is not 

a vector but it is a bivector which is represented by a parallelogram 



with a definite orientation. We can introduce a procedure for adding 

two bivectors together. This addition procedure is indicated in Figure 5> 

A sy\ A 
cA y s 

^a+b 

/ 
a 

Figure 5 

¥e find that this addition has the properties 1,2,3,A of the preceding 

section. 

We can also define the operation of multiplying a bivector by a 

scalar.  The product of the bivector aAb   by the scalar a, written 

oaAb,   is the bivector represented by a parallelogram whose area is 

|a|  times the area of the parallelogram in Figure 2 representing aAb, 

whose orientation is the same or opposite to that in Figure 2 according 

as  a is greater or less than zero, and whose plane is the same or parallel 

to that of Figure 2.  It is easy to see that this operation of multiplying 

a bivector by a scalar has properties  5,6,7,8  of the preceding section. 

Consequently, the set of blvectors forms a linear space.  We shall soon 

show that this space is three-dimensional. 

Let us illustrate the procedure for finding a wedge product by 

considering a simple example.  Suppose a = a 1 + a j + a_k and 

b = ß.^ + ß2J + ß3k,  then 

aAb = a ß2 iAJ + a ß3 iAk + a^ jAl + a^ jAk + a^ kAi + a^ßg kAJ.  (/,.) 



Notice we have used the fact that the wedge product of a vector with 

itself is zero.  The result can be still further simplified by using the 

anti-commutativity (3) of the product.  We have  JAI = - IAJ, kAj = - JAk, 

iAk = - kAi,  and therefore the product in (A.) simplifies to 

aAb = (a1ß2 - a^) lAj + (a2ß3 - a^^   jAk + (a.^ - a1ß3) kAi.   (5) 

Since every vector can be written as a linear combination of l,j, and 

k,  it is clear that every bivector will be a linear combination of the 

three bivectors  iAJ, JAk,  and  kAi.  This shows that the space of bivectors 

is three-dimensional. 

The equation (5) suggests the connection between the wedge product 

and the vector product.  Notice that each of the fundamental bivectors 

iAj, JAk,  and  kAi,  has a unique normal, namely, the vectors  k,i, and  j, 

respectively.  If we replace each bivector in (5) by its normal, we get 

the vector 

(a2ß3 - ci3ß2)i + (a3ß1 - a1ß3)j + (c^ß,, - a^k, 

which is the vector product of a and b. 

Determinants 

The procedure for forming wedge products can be extended to form the 

wedge product of three vectors.  This triple wedge product, which we call 

a trlvector, is represented geometrically by the oriented volume of the 

parallelepiped generated by the three vectors (see Figure 6).  The volume 



is  oriented by assigning an order in which  the vectors    a,b,   and    c    are 

described.     If the  order is  such  that  the vectors  form a  right-handed 

set,   the volume is  considered positive.     If the vectors   form a left- 

handed set,  the volume  is  considered negative. 

Let us illustrate  the procedure  for forming  the trivector by con- 

sidering  an example  in which the vectors     a    and    b    are  the  vectors 

used In  (4,)  and  the vector    c = Y-.i + y j  + y k.      Using   (5),   we find 

that 

aAbAc  = ^(a-^  - a2ß1)   iAJAk + Y-^a.^   -  c^ß,,)   JAk/ü   + T-^a^  -  cu^J   kAiAj, 

(6) 

Because of  (3),  we see that    kAlAJ  =  - iAkAJ  = iAJAk,     and    jAkAi = iAJAk, 

therefore  the  result in   (6)   can be simplified  to the  following: 

aAbAc =  [Y1(a2ß:3  - 
a
3?2)+ r2^a3ßl  ~ al'33^+ r3^alß2 " a2ßl^ ^  lAJAk- 

The  expression  in the bracket is   obviously the determinant of the 

numbers which are the components  of the vectors     a,b,   and    c.     This   result 

justifies  the geometrical interpretation of the trivector as  the volume 

of the parallelepiped in Figure 6. 
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A wedge product for any two vectors with n components can be 

defined by a slight extension of the method used to define the wedge 

product of two vectors in three-dimensional space.  For example, if 

a = (2,3,- 1,5),   b = (0,1,- 2,1) 

are two 4.-vectors, we first write them as 

a = 2e^  + 3e2 - e„ + 5e,,    b = e2 - 2e + 4e, 

where  e.,e-,e_,e  are the basic 4—vectors defined by the equations 

e1 = (1,0,0,0),    e2 = (0,1,0,0), 

e3 = (0,0,1,0),    e^ = (0,0,0,1). 

We then form the wedge product using the anti-commutativity rule (3) and 

the fact that the wedge product of two identical vectors is zero. We get 

aAb =   2enAe„  -^enAe0  +8e-1Ae,   -    5 e^Ae0 +   7e„Ae,   +   6enAe,. 
i-     < 13 14 23 24 34 

The wedge product of any number of n-vectors can be defined by 

continued multiplication.  For example, if 

c = e1 - e2 + 3e , 

d = 2e-, - 2e„ + e ., 

then the wedge product of the vectors     a,b,   and     c    is 

aAbAc = -   9 e  Ae Ae_  +   21 e, Ae Ae     -   6 e-, Ae_Ae     -   21 e  Ae_Ae 

and the wedge product of the vectors     a,b,c,  and    d     is 

aAbACAd =   75 e, Ae Ae„Ae   . 
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The number 75 is the value of the determinant of the four vectors a,b,c, 

and d, that is, 

= 75. 

2 0 1 2 

3 1 -1 0 

-1 -2 0 -2 

5 4 3 1 

This connection between the determinant of four ^-vectors and their 

wedge product suggests the following theorem: An n b^ n determinant 

may be evaluated by forming the wedge product of the n column vectors. 

Of course, the determinant may also be evaluated by forming the wedge 

product of the row vectors. The proof of these theorems will be found 

in [2]. 

The definition of the determinant by means of a wedge product is 

not very useful for calculating the value of a determinant, but it is 

useful in obtaining theoretical results about determinants. For example, 

we shall use this definition to obtain Cramer's rule for the solution 

of a system of linear equations.  Suppose that a-.,a , ...,a ,b are given 

n-vectors and that  ^.,^„....,C  are n unknowns to be found from the 12 n 

system of equations 

11 2 2 n n (7) 

Let us solve for ?, . Since the wedge product of a vector with itself 

is zero, we may eliminate j;  by multiplying equation (7) with a . 

In this way we get 

h  alAa2 + h  a3Aa2 +',-+ ^n anAa2 = bAa2- 
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Similarly,  multiplying by    a-,...,a      will eliminate the other unknowns 

and we  find 

?    a  Aa    A-*-A a    = bAa    A-"A a  , 

or 
bAa     A«•-A a 

r    _ < n_ 
1       a, Aa     A. • ■ A a  ' 

12 n       ■ 

which  is  the well-known Cramer's  formula. 

Derivations 

Given an n-dimensional linear space  such  as  the  space  of n-component 

vectors, .we may  form bivectors  by taking  the wedge product of two vectors, 

trivectors  by taking  the wedge  product of three vectors,   and so on.     We 

shall say that  the original elements   of  the space are elements  of degree 

one,   bivectors  are elements  of degree two,   trivectors  are  of degree  three, 

and so  on until we get  to  elements  of degree    n.     We may  form the sum of 

elements  of different degrees  in a purely formal fashion  thus: 

3e1  + e2  -    2e1Ae2 +   6 e^e^e   . 

Note that this sum cannot be simplified.  Since we can also always form 

the wedge product of any two elements of arbitrary degree, we have an 

algebra called the exterior or Grassman algebra over the linear space. 

An operator D which maps elements of the exterior algebra into 

elements of the algebra is said to be a linear operator if 

D(ax + ßy) = aDx + ßDy, 
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for any elements  x and y of the algebra and any scalars a    and ß. 

If the operator D also has the property that it maps elements of degree 

k into elements of degree k + v and if D behaves like a derivative 

with respect to products, that is, if 

D(xAy) = (Dx)Ay + (-)kV xA(Dy) (8) 

for x an element of degree k, then D is called a derivation of degree 

v.  For example, in the space of three-dimensional vectors, if the vectors 

are functions of the time t, then ■z-r   is a derivation of degree zero. 

Another example is given by the operator div or V- .  This operator 

is a derivation of degree minus one because it maps vectors which are of 

degree one into scalars which are of degree zero. The product rule (8) 

is also obeyed as can be seen from the well-known formula 

V • (a x b) = (V x a)• b - a • (V x b). 

Notice that we have used here the vector product instead of the wedge 

product.  This is only possible in three-dimensional space. 

We shall prove a result which will be useful to us in the next chapter. 

2 
Theorem.    If D is a derivation of odd degree  v,  then D  is a 

derivation of degree  2v. 

The proof is obtained by straightforward calculation.  We have, by 

definition, 

vkv 
D(xAy) = (Dx)Ay + (-)KV xA(Dy) 



u 

if x is an element of degree k. Then since Dx is an element of 

degree k + v, we get 

D2(xAy) = (D2x)Ay + (-)(k+v) V(Dx) A(Dy) + (-)kV [ (Dx) A(Dy) + (-)kv xA(D2y)] 

= (D2x)Ay + (-)2kV xA(D2y), 

2 
because  (-)     + (-)   =0 since  v is odd.  Thus D  satisfies 

the product rule (8) and since it maps elements of degree k into 

elements of degree k + 2v it is a derivation of degree  2v, 

Two final remarks.  First, it is sufficient to define a derivation 

on elements of degree one because by the product rule (8) it can be 

extended successively to elements of arbitrary degree.  Second, no matter 

what the degree of a derivation D  is, if D  is applied to a scalar, it 

gives zero.  This follows immediately from (8) if we put y = a,  a scalar. 

We find 

D(ax) = aDx + (-) V x A Da, 

or 

x A D(a) = 0, 

for all  a.  Therefore,  D(a) = 0. 
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Chaptsr II Topology of Networks 

Introduction 

This chapter will study the geometry of networks with no reference 

to their electrical properties. We shall assume that the network is a 

connected set containing b branches and n + 1 nodes. We shall assume 

that each branch connects two nodes and that each node lies on at least 

two branches (see Figure l) .  Further we shall assume that each branch 

p 
1 S node 

Figure 1 

carries a current and a voltage and finally we shall assume that these 

currents and voltages satisfy Kirchoff's Laws, namely, the sum of the 

currents at any node point is zero and the sum of the voltages in any 

closed circuit is also zero.  In this chapter we shall assume no relation- 

ship between current and voltage. These relationships will be considered 

in the next chapter where we will discuss the electrical properties of 

networks. 

Chains 

Consider a network of b branches and of n + 1 nodes. In Figure 1, 

we have an example of such a network with b - 8, and n = 4« We shall 
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name the nodes P_,P., ,P„,...-P •  The nodes will be called O-cells. A 
0' 1' 2'   ' n   

linear combination of O-cells such as 

5P -6P +P -P 

will be called a 0-chain.  Later we shall give a physical interpretation 

for 0-chains. At present, a 0-chain will be just a formal sum of the 

symbols Pn,P-,...,P .  The set of all 0-chains forms a linear space. 

The branch joining P.  and  P. will be denoted by P.P.  if the 

branch is to be considered oriented in the direction from P.  to  P.. 
i      J 

Since the direction from P.  to  P.  is the opposite of the direction 

from P.  to P., we shall write 

P.P. = - P.P.. (1) 
i J     J i 

In this way,   an oriented branch may be considered  an anti-commutative 

product of nodes. 

A branch will be   called a  1-cell and a linear combination of 1-cells 

such as 

2PP     -6P'D    +    5PP ^ r0  1        D r2' 1        ^ rA 3 

will be called a 1-chain.     The set of all 1-chains  forms  a linear space. 

We shall assume  that  a chain contains  only those  1-cells which are 

branches  of the given network.     Thus  in Figure 1 no chain would contain 

a 1-cell such as    PnP-3«     If we want to emphasize that a 1-chain contains 

only branches  of the network, we shall call it an admlssable  chain. 

A closed circuit  on a network will be  called a 2-cell.     Thus,   in 

Figure 1,  P PnP  ,  P.PoP  .   P P0Po    are examples of 2-cells.    Each 2-cell 
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will be considered orientated according  to the order in which the points 

are described.     Thus    P P P      is  oriented clockwise and    P-P P..     is  oriented 

counter-clockwise.    We shall write 

P P P 0 12 pop2pr 

Notice that this equation is just what would be expected if the 2-cells 

are considered as triple products of nodes with the products obeying the 

anti-commutative law (l). 

A linear combination of 2-cells such as  2Pr,PnP0 - P,P,Pn - 3PnP„PQ 

will be called a 2-chain.  It Is convenient to restrict the concept of 

2-cells to symbols containing three points only; consequently the circuit 

P.P^P-P,  in Figure 1 will not be considered as a 2-cell but as the 2-chain 
-L   ^-   _5  4 

P.. P-P- + P-P-P..    Because of the  orientation of the 2-cells,  the  sum in 
J-  <i 3 13  4 

the   2-chaln contains  the common  side     P-iPo     traversed  twice,  once in the 

positive and  once in the negative direction;   consequently,   the chain  reduces 

to  the branches     F-.'P   ,   P0Po5   ?-.?, >   P/Pi     traversed in that  order,   thus 12        2.5        .54       4-1- 

givlng the circuit    P-.P„P_P, . 

Boundary 

We shall define an algebraic operator on the spaces of chains of all 

dimensions.  This operator will be called the boundary operator, because 

when this operator is applied to cells it will produce the geometrical 

boundary of the cell.  We denote this operator by the symbol 9  and 

we define its action as follows: 

The operator 6 will be a derivation on the space of all chains. 

When it is applied to a scalar, it gives zero as any derivation will. 
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When    5    Is  applied  to  a node,   it gives  one.     If we now consider O-cells 

as  elements   of degree  one,   1-cells  as  elements  of degree two,   and  2-cells 

as  elements  of degree  three,  we may,  by the  remark at the end  of Chapter I, 

extend     9    as  a derivation from 0-eells   first to 1-cells  and  then to  2-cells. 

In doing  so,  we shall use  equation   (8)   of the preceding  chapter and we 

shall assume  that     8    is  a derivation of degree minus  one. 

Let us  consider    9(P.P.).     We have 

a(p.p.) = a(p.)p. - p.a(p.) = p. -p.. (2) 

We see that the boundary of the 1-cell P.P.  is the O-chain  P. -P., 

that is, the end point P.  counted positively and the initial point P. 

counted negatively.  Note that the boundary of P.P.  is P. - P.,  which 

is the negative of the boundary of P.P.. 

Since  9 is a linear operator, the boundary of a 1-chain may be 

found by applying  9  to each term in the chain.  Thus 

9(P1P2 + 2?^)   = P2 - ?! + 2P1 - 2P0 = P2 + ?! - 2P0. 

Let us now consider the boundary of the 2-cell  P.P.P, .  Again using 

(8) of the preceding chapter and (l) and (2) of this chapter, we find 

that 

aCP.p.pJ = a(p.)p.p, - P. acp.p.) = P.R - P.P, + P.P.. v i J k'    "■ i; j k   i  v j k'    j k   i k   i j 

We see that the boundary of the 2-cell P.P.P,  in Figure 2 is the 1-chain 1 J -^ 

P.P. + P.P, - P.P, 
i J   3 k   i k 
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that is, the branches that form the boundary of the 2-cell  P.P.P, ,  each 

Figure 2 

counted with a plus or minus sign according as the orientation of the 

branch agrees or does not agree with the orientation of the 2-cell. 

Again, since 9 is a linear operator, the boundary of an arbitrary 

2-chain may be found by applying  6  to each term in the chain.  Thus the 

boundary of P-^PpPo + P1
P3P/ is 

P1P2 + P2P3 - P1P3 + P1P3 + P3V P1P^ = P1P2 + P2P3 + P3PA " F1PU' 

Notice that this 1-chain actually represents the geometrical boundary 

of the circuit P P P P  in Figure 1. 
1 ^ ^ 4 

We shall now prove a fundamental topological fact, namely. 

Theorem.  The boundary of a boundary is zero. 

For the proof, we use the theorem we proved at the end of the 

2 
preceding chapter.  Since 9 is a derivation of odd degree,  9  is a 

derivation of degree minus two, but  9 (P.) = 9(1) = 0.  Therefore, 

2 
when we use the remark at the end of Chapter I, we conclude that 9 

extended to all chains gives zero. 
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Current Chains 

A chain may be  interpreted as  currents  carried In  the appropriate 

cells.     For example,  a 0-chain such as    2a, P.     will describe currents 

of magnitude     a,      flowing into  the node     P, .     We shall  call such a chain 

a  node-current chain.     A  1-chain such as     SB. .P.P.    will describe currents 
  KiJ   i  J 

of magnitude     B. .     flowing along the branch    P.P..     We call such a chain 

a branch-current  chain.     A  2-chain  such as    SY. „P.P.P,      will describe 
  'ijk i   j   k 

currents  of magnitude    Y. .,      flowing  in the circuit    P.P.P. .     We  call & ijk b i  J  k 

such a chain a loop-current chain. 

Consider a branch current     aP.P, .     Its boundary is     aP,    - aP.     which J   k ^ k j 

may be interpreted  as  a current of magnitude     a    going  into  the node     P, 

and  a current of magnitude    a     going  out  of the node     P..     Generalizing, 

we see  that  the boundary of a branch-current chain is   the node-current 

chain which describes   the  total amount of current  flowing  into  the nodes 

because of the branch currents. 

We can obtain a similar result for loop-current chains.     The 

boundary of a loop-current chain is  the branch-current chain which 

describes   the currents  flowing  through tne branches   that  form the sides 

of the loop. 

Suppose we have a branch-current chain which is  the boundary of a 

loop-current chain.     Using  the theorem about  the boundary of a boundary 

being  zero,  we find  that the boundary of  this  branch-current  chain must 

be a node-current chain which is identically zero.     This means  that the 

sum of the  currents  flowing  Into any node must be  zero;   consequently, 

Kirchoff's  Node Law is  satisfied.     Conversely,  if the network is  connected, 
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Kirchoff's Node Law will imply that the branch-current chain is  the 

boundary of a loop-current chain.    We shall state this  result in the 

following way:    A branch-current chain must be a boundary 1-chain. 

Co-chains 

To discuss voltages in the same way we have discussed currents, we 

introduce the concept of a co-chain and a co-boundary. A k-co~chain 

is a numerical-valued function defined on k-cells.  For example, consider 

the O-co-chain c  defined as follows:  The value of C- for any 

P. j ^ 2,  is zero; the value of c  for P  is one.  Note that this 

co-chain may be extended linearly to be a function of chains; thus, 

co(2akV = V 

Similarly,   a    1-co-chain is  a function defined  on 1-cells,  and a 

2-co-chain is  a function defined  on     2-cells.     Again,   these functions 

may be  extended  linearly  to be  functions   on chains.     We shall say  that 

the value  of a    p-co-chain    c       on a    p-chain    d^    is  the  product of 

the  co-chain with the  chain.     For example,   if the    1-co-chain    o.,     has 

the value    a..     on the     1-cell    P.P.,     and if the    1-chain    d      is 
ij i r 

20. .P.P.     then the product of    c-,     and    d      is 

C-,    ■   d1  =  2a. .6. .. (3) 

The co-boundary of a    (p - l)-co-chain    c    ,     is  the    p-co-chain. 

written    6c    1,    which is defined as  follows", 

6c 

P-XVV V" v^ioV" V1- U) 
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For example,   the  co-boundary of the     O-co-chain defined  previously is 

the    1-co-chain whose value  on the    1-cell    P. .     is   zero  if neither    i 

nor    j     is  two;  on the    1-cell     P.   _     its value  is     1;   and  on the    1-cell 

P0   .     its value is     - 1.     Notice that the co-boundary is   zero if    P 

is   not   on  the.boundary  of  the     1-cell,   but  it  is     +1     if     P.     is   tue   end 

point  of the     1-cell  and     - 1    if it is   the origin of the     1-cell. 

We have  proved  that the boundary  of a boundary is   zero.     Using  this 

result,  we  can prove  the  following dual  theorem: 

The  co-boundary  of  a  co-boundary  is   zero. 

The proof is  a simple  consequence  of  (4-).     We have,   for any     p-chain 

dP, 

62C •   dP   =   5c      „ p-2 p-2 iP ^ c •  62dP = 0 p-2 

2 2 
because of the fact that  6 =0.  Since the value of  & c  „  on any 

p-2 
2 

p-cham is zero, we must have 6 c  „ = 0. r ' p-2 

Voltage co-chains 

Just as currents were defined by chains, so voltages will be defined 

by co-chains.  A  0-co-chain will define the value of a potential at 

each node; a 1-co-chain will define a voltage in each branch; a  2-co- 

chain will define a total voltage for a 2-cell.  For example, consider 

the  0-co-ohain which states that the potential at P  Is  2, at P, 

is U,     and at P„ is  5.  We shall write this as 

2P0 + 4P-L + 5p2. 
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Note that p, for k = 0,1,2 is actually the co-chain that has the 

value 1 for P, and the value zero for any other 0-cell. Let us 

consider the co-boundary of this  co-chain.     It is 

2PoPl + ^2 + P1P2- 

Where p.p. is the co-chain that has the value 1 for the 1-cell 

P.P.,     the value 
i J 

1     for the    1-cell     P.P.     and  the value  zero for 

any other    1-cell.     We  see that the co-boundary of a node-potential 

co-chain is   the branch-voltage co-chain  such that the voltage in each 

branch is  the difference of the node potentials at the ends  of the branch. 

A similar calculation will show that the co-boundary of a branch- 

voltage co-chain is  a loop-voltage co-chain such that the voltage in each 

loop is  the  oriented  sum of the voltages  in  the branches bounding  the 

loop. 

Suppose we have  a branch-voltage  co-chain which is   the  co-boundary 

of a node-potential  co-chain.     Since the  co-boundary    of a co-boundary 

is   zero, we see  that  the co-boundary of  the branch-voltage co-chain 

must be zero.    This  result implies  that the sum of the voltages in any 

loop must be zero.    Thus, Kirchoff's Circuit Law is satisfied.    Conversely, 

it can be shown that if the network is   connected and if Kirchoff's Law 

is satisfied,  then the branch-voltage co-chain must be the co-boundary 

of a node-potential  co-chain.     We shall state this  result as  follows: 

The branch voltages must form a co-boundary co-chain. 

Tellegen's  Theorem 

We shall prove an important theorem connecting the branch currents 

and  the branch voltages in an arbitrary network if Kirohoff's Laws are 
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satisfied.     The  theorem,   first proved by Tellegen,   is  as   follows: 

Let    I    be a current vector,   that is,   let     I    be a    b-component 

vector such that  each component represents  the gurrent in a particular 

branch  of the network.     Let    V    be  a voltage vector,   that is,  let    V 

be a    b-component vector such that  each  component  represents  the  voltage 

in a branch.     If Kirchoff's Laws  are satisfied,   then the  scalar product 

of    I     and     V     must be   zero. 

Notice  that no  relation between     I     and     V    is  assumed.     All that 

is   required  is   that the  current and voltage vector each separately satisfy 

Kirchoff's  Laws.     The  proof  of the  theorem will follow easily from the 

topological  characterization  of branch-currents  and branch-voltages given 

previously.     To  the vector    V    there  corresponds  a co-boundary    1-co-chain 

C-,     and  to  the vector     I     there corresponds  a boundary    1-chain    d   . 

From  (3)  we see  that  the  scalar product  of    I     and     V    is   equal  to    C-. 

Since     c,     is  a co-boundary,   it may be written as     6cr    and    since    d 

is  a boundary,   it may be written as     9d   .     Now by  (4), 

6c0  •   ad2 = c0  •   a2d2 =  0, 

because the boundary of a boundary is zero; therefore the theorem is 

proved. 

Tellegen's theorem can be generalized and written in an integral 

form.  Suppose we consider the behavior of a network as a function of 

some parameter such as the time t.  For each value of t in some range 

T  there will be a current vector l(t)  and a voltage vector V(t). 

We shall prove the following: 

d1. 
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Integral Theorem 

If I and V Independently satisfy Kirchoff's Laws, then 

$  Vdl = 0. 
r 

The proof is an easy consequence of Tellegen's theorem. Since 

l(t + h)  and l(t)  are both current vectors, we have 

V(t)[l(t + h) - I(t)] = 0 

for all values  of    t    and    h.    Letting    h    go to  zero, we find  that 

V(t)dl(t)   = 0 

for all values of t. Approximating the integral in the theorem by a 

sum, we finally obtain the result 

5 Vdl = 0. 
r 

Notice that a similar argument will prove the dual result, namely, 

5 IdV = 0. 
r 
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Chapter III Non-linear Networks 

Relations between currents and voltages 

In the preceding chapter we have considered the branch currents 

and the branch voltages as completely Independent entitles, limited only 

by Kirchoff's Laws.  However, in any network the current in a branch is 

related to the voltage in that branch by an electrical device such as a 

resistor, an inductor, or a capacitator.  Kirchoff's Laws together with 

the electrical relations between the branch currents and the branch 

voltages will give us a complete set of equations from which the elec- 

trical behavior of the network can be determined. 

We begin by specifying the relation between the orientation of the 

branch and the signs of the branch current and the branch voltage.  If 

the current through a branch is in the same direction as the orienta- 

tion, the current will be called positive; otherwise, the current will 

be called negative.  The voltage across a branch will be equal to the 

potential at the endpoint of the branch minus the potential at the 

initial point of the branch.  Since the current goes from a node of 

higher potential to one of lower potential, our conventions about signs 

will produce an extra minus sign in the customary relations between 

current and voltage.  For example, consider Figure 1 in which the upper 

node of the branch is at six volts potential above the potential of the 

lower node and in which the resistance is two ohms.  Of course, the 

current through the branch is three amperes flowing downward.  If the 

branch is oriented downward, then the current is positive and the 

voltage is negative.  However, if the branch is oriented upward, then 
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Figure 1 

the current is negative and the voltage is  positive.     In both cases, 

the relation between the voltage    v    across  the branch and the current 

i    through it is    v = - Rl,    where    R    is  the resistance of the branch. 

In addition to linear resistors, we shall also consider non-linear 

resistors in which the relation between current and voltage is given 

by the equation    f(i,v)   = 0.    This  equation can be solved for either of 

the variables    i    or    v    as a function of the other variable.    We shall 

not require that either of the resulting functions be single-valued 

because we shall permit the characteristic  of the resistor to have the 

shape shown in Figure  2. 

Figure 2 
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The  inductors   and capacitors may also be non-linear.     For an 

inductor,   the relation between current and voltage may have  the form 

T r■\  di v- -L(l)  ^ 

where L(i)  is a non-negative inductance.  For a capacitator, the 

relation between current and voltage may have the form 

1 = " C(v) dt 

where C(v)  is a non-negative capacitance. 

Equilibrium equations 

Let us consider again a connected network containing n + 1 nodes 

and b branches.  A set of branches which is connected and contains no 

closed loop is called a tree. A maximal tree is a tree which Is not 

contained in any other tree.  It is easy to see that a maximal tree must 

contain all the nodes; for, if a node did not belong to the tree, a 

branch joining this node to the tree could be added without spoiling the 

tree shape.  It is also easy to see that a maximal tree must have exactly 

n branches; for, starting with one fixed node, we must add one branch 

for each node that is to be connected to this fixed node. 

The network will have many maximal trees.  Choose one such tree and 

consider the b - n = L branches that do not belong to the tree.  These 

L branches are called links of the tree.  Note that if any link is added 

to a maximal tree the resulting network will have a loop in it. 

From the definition of a tree it is clear physically that the 
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voltages in the n branches of a maximal tree can be chosen arbitrarily 

because the tree has no loops. Then by adding each link in turn to the 

tree and using Kirchoff1s Circuit Law we may find the voltage in that 

link.  Since the network contains L links, this argument shows that 

there are L independent loop equations. 

Instead of starting with voltages, we may begin with currents. As 

we add a link to the maximal tree, we may impress an arbitrary current 

on it.  It is clear that when all the links with their currents have 

been added to the tree, the currents in the other n branches of the 

tree can be determined.  This argument implies that there are exactly 

n independent mesh equations. Notice that so far we have not used the 

electrical properties of the branches but have used only Kirchoff's 

Laws. 

Suppose we pick a set of  r < L branches whose currents we shall 

call 1. ,...,i  and a set of s < n branches whose voltages we shall 

call v .......v , .  We assume that no branch has both a current and 
r+1     r+s 

a voltage specified.  We shall show that all the other currents and 

voltages can be determined from these specified currents and voltages. 

First, from Kirchoff's Laws we have L  equations for the voltages and 

n equations for the currents.  Then, in the b-r-s branches for which 

neither current nor voltage was specified, we use the electrical properties 

of these branches to obtain b-r-s  equations.  Thus, we have a total of 

L+n+b-r-s= 2b-r-s equations to find the unspecified b-r currents 

and the b-s  voltages.  Since the number of equations is equal to the 

number of unspecified quantities, we assume that they can be solved to 



give equations   of the form 

i    = P (1, v) , 

v    = G  (i , v) . 
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1 < p. < b. 

(1) 

Notice that in  this  discussion we have not used  the  electrical 

properties  of  the branches  in which  either  the  current  or the voltage 

was   specified.     If we assume that the voltage in  the     r    links  is 

related  to the  current by equations  of the   form 

v    = g  (1  ), 
P P     P 

1 < p < r 

and  if we assume that the  current in  the     s    branches  is  related   to  the 

voltage by equations  of the form 

ö or* 
r +  l<ö   <r  +  s 

we  obtain the  following     r + s     equations   from which  the equilibrium 

state  of the  network can be determined: 

;  (1 )   = G  (l,v), 

f (v)   = F.(l,v), 
GO 0 

1  < P   < r, 

r+l<ö<r+s, 

(2) 

An example may clarify the argument.     Consider the network in Figure  3 

for which    n =  2    and    b = 4-.     Branches  numbered 3 and A, will form a maxi- 

mal tree and  branches  1 and  2 will be links  for this   tree.     Let us assume 

that the currents,     1       and     1       in branches  1 and  2 are specified and 

also the voltage    v-     in branch 3«     This   implies  that 

Figure  3 
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r = 2 and s = 1. By the use of Kirchoff's Laws we find that the 

currents in branches 3 and A. are given by the equations i_ = i1 + i , 

i. = i., + i.. Next, assuming that the electrical properties of the 

unspecified branch 4 are such that the relation between current and 

voltage is given by v = g.(i)  we find that 

VA = S^h) = gA + ^ 
and 

vl = V2 = " \ " S = " S - H^l + l2) • 
Thus, all the unspecified variables have been expressed in terms of the 

specified ones. Now, using the electrical properties of tne specified 

branches, we finally obtain the following equilibrium equations for the 

network: 

g^i^ = g2(l2) = - v3 - g4(l1 + 12) 

f3G3) = + ±1 + i2. 

In writing  this  set of equilibrium equations  we have assumed   that all 

the branches were resistors.     Suppose,  however,   that branches 1 and 2 

were  inductances  and  that branch 3 was  a capacitor.     Then the dynamical 

equations  for the network would be 

~    di1 „    di2 ^ „        „ 

Ll^TT = L2(i2)Zr = + v3  + SU{±1 + 12) ' 

.    ^3      „ „ (3) 

Notice that any set of currents and voltages can be specified, as 

long as Kirchoff's Laws are not violated. The only reason for specifying 

a particular set of currents and voltages is that we wish to write the 

equilibrium equations of the network in terms of this particular set. 
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Mixed Potential 

A careful study of the dynamical equations for a network shows that 

they can be written in a simple form.  For example, equations (3) may 

be written as follows: 

dv. 

91-, 
J2' 2; dt 

3P 

31 _ 
C.(v,)^=^ ^VV3' dt dv 3 

where 

p = v3(i1 +.i2) + j 
(i1+I2) 

g^(l)di. 

We shall call the scalar function P  the mixed potential of the network. 

Consider again a network containing n + 1 nodes and b branches. 

Suppose that the branches numbered l,...,r are Inductors and the branches 

numbered r + l,...,s  are capacitors.  Just as in the preceding section, 

we can specify the currents in the inductive branches and the voltages 

in the capacltative branches.  Again, we obtain the equations (l), namely, 

1  = F,(i.v) 

v = G (i,v) 1 < u < b. 
U) 

The currents and voltages are functions of the time  t.  Let  P be 

a curve in the space of currents and voltages representing the variation 

of these quantities, the Integral Theorem of Chapter II, we have 

b r  r+s    b 
0 = Z j v dl = (2, + S +  2 H v di p,  (x 

r+s 

r+1  r+s+1 P 

r+s 

p. .ji 

(5) 

= 2 5vdl-r.Jidv+[2iv|+      2       jvdi] 
i r   ^   ^     r+i r   ^   ^ r+l    ^  ^P       r+s+l f    ^     ^ 
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Consider the two terms in the bracket on  the right-hand side.     Using  (4.) 

for    r + l<|J.<s,    we can express  the sum in the bracket as  a function 

of the specified variables    i,v    at the end of    P    and at  the beginning 

of    P.     For the integral  term in the bracket,  notice  that the branches 

involved are  only the  resistive  ones  in which    v      depends   only on    1   . 

(It is  immaterial  that the  relation between    i       and    v       may not be 

single-valued.     The initial point of    V    determines  a point on the curve 

f   (i v )   =  0    and we  just integrate along  that curve.)     The point of the 
r     r r 

argument is  that a term such as 

f v di    =   f g  (i   )di 
p    P-    M-       p    ^     ^      P- 

depends  only on  the  endpoint of    P    and by  {/,)   this   is a  function of  the 

specified  variables   only.     Our conclusion is  that the bracket term in 

(5)   is  a function    P(i,v)     of the specified variables  only.     We  call  this 

function the mixed  potential of the network. 

may then write  (5)   as  follows: We 

r r+s 
2  5 v dl     -    2 
1 P    ^    ^       r+lV 

r r+s 
2  5  vdl     _    s     j i  dv    + P(l,v)   =0. (6) 

r       „J-T   n    ^     ^ 

Since the  variables     i,v    are independent,  we see that (6)   implies  that 

1 < M.  < r 

r + l<tJ.  <r + s, 

But v , 1 < p. < r,  is the voltage across an inductor and i , 

r+l<n<s  is the current across a capacitator.  Using the 

V      = 
9V 
9P 
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electrical  relations  for these branches,  we  finally obtain the dynamical 

equations  of the network,  namely 

where 

di ar> 
T   (•   \  -ü -   "p 

^^V.1 dt       31  ' 1 < 1^ < r 

r + l<|i<r+s. 

b r+s 
P(i,v)   =      Z       f v di    +    E    i v   I 

r+s+1 r    ^    ^      r+1    ^'r 

(7) 

(8) 

For convenience,  we have dropped  the tilde signs. 

The Mixed Potential  for a Complete Set 

The mixed  potential  can be given a particularly useful  form in case 

the    r    currents   through  the inductors   and  the     s     voltages   through the 

capacitators   form a  complete  set  of variables.     This  means  they are a 

set of  currents  and  voltages  which do not violate Kirchoff's  Laws  and 

which are such that  either the current  or the voltage,   or both,  in every 

branch  is determined by Kirchoff's  Laws   only.     For example,     i.,i0,     and 

v_     form a complete  set  of variables  for the network in   Figure 3 because, 

no matter what values   they have,   they do not violate Kirchoff's  Laws 

because  the  current in  the unspecified  branch  4 is  determined by Kirchoff's 

Laws   to be    l.   + i^- 

Consider a network in which  the specified  variables   form a complete 

set.     Let    N       be  the  set of branches   of the network in which the voltages 
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are specified by Kirchoff's Laws and let N.  be the complementary set 

of branches, that is, those in which the current Is specified by Kirchoff's 

Laws.  For example, in Figure 3, N  would contain only the branch 3 and 

N.  would contain branches 1,2, and 4- Using this decomposition of the 
i 

network, we may write (8) as follows: 
i 

r-Kä 
P(l,v)  =[    Z      +      2    ]  J v di    +    S    i v   I     . 

|j.>r+s       |j,>r+s    r    ^    ^      r+1    ^ ^'r 

The  second  sum in  the bracket can be  integrated by parts  to give 

P(i,v)   =       T       jvdl-      2       J i dv    +     2     i  v   I     . (9) 
H>r+s   r    ^     ^      |j,>r+s ^    ^      ti£Nv    ^ ^'r 
ueN. ueN 
^i r v 

Notice we have used the fact that the inductive branches belong to N. 

and the capacitatlve branches belong to N  to simplify one of the sums 

in (9). 

The individual terms In (9) can be given an interesting physical 

interpretation.  The first term 

5 v di 
p ^ ^ 

is well-defined as a line integral over the curve connecting i and v 

in the branch [L,     We call this integral the current potential of the 

branch p..   Similarly, the integral 

5 i dv 
r    V    V 

is called the voltage potential of the branch p.. Note that in (9) the 

current potential is evaluated only for branches in N.  and the voltage 
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potential only for branches  in    N  .     Since  the current is  specified in 

N.     and  the voltage in    N   ,     we  see  that 

P(i,v)   = F(i)   - G(v)  +     Zivi 
r     v 

(10) 

where  F(l)  is the current potential and  G(v)  is the voltage potential, 

It can be shown that the third term on the right-hand side of (10) is 

a bilinear function of the specified currents and voltages.  For details 

we refer to [l]. 

Example of the Calculation of the Mixed Potential 

Consider again the network illustrated in Figure 3,  but now we shall 

specify its electrical properties as illustrated in Figure 4..  The symbol 

+ v. 

in branch 3 indicates the presence of a non-linear resistor whose 

characteristic will be assumed to be of the form v, = - f(iO• 

Since there is only one inductor and one capacitor in the network 

of Figure 4-, the appropriate variables to specify the dynamical behavior 

of this system are i„,  the current across the inductor, and v.,  the 
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voltage across the capacitor. Note that i  and v. do not form a 

complete set of variables because the use of Kirchoff's Laws alone without 

the electrical properties of the network does not determine the value 

of either i, or v . 

Nevertheless, even though the set of variables is not complete, a 

mixed potential does exist and the dynamical equations for the network 

in Figure 1+ can be written in the form (7) . To see this, let us write 

Kirchoff's Laws using the electrical properties of the network. It is 

clear that i„=-i. - io*  We have 

di2 
L2 IT ' ^ 

v^ = f(i1 + i2) + i^ (11) 

dv4 
C4 ^t"- " (ll + ^ 

Since we have three equations for the three variables i,,l-,v. ,  the 

system is completely determined. 

Notice that the second equation of the set (11) is not a differential 

equation.  This occurrence is a result of the fact that the set of 

variables  i_ and v.  is not a complete set.  We can of course eliminate 
<■ 4 

i,  from the equations (ll) and thus obtain a set of differential equations 

only.  To do this, we notice that the second equation of (ll) may be 

written 

V4 + i2Rl = f^il + i2^ + ^1 + i2^Rl' ^ 
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so that    v.  + ipR-,     is a function of    i^  + i   .    Let us  invert this 

functional relationship to get    i    + i5    as a function of    v.  + i-R-, 

and let us write  this new relation as 

il + i2 = ^^ + i2Rl)- 

Now eliminating 1  from the first and third equations of (11), we 

get the desired result: 

CA dt = -^\ + ±2Rl) 

di2 
SIT = Rlg(\+ ^V   - V2 

(13) 

The set of equations (13) may be written in the form (7) if we 

introduce the mixed potential P defined as follows: 

P - 5 
0 

g(v)dv -l\±l> (U) 

Notice that the form (14) for the mixed potential is not in the form (10), 

that is , It is not the sum of a term depending only on the voltage plus 

a term depending only on the current plus a term which is bilinear in 

the current and the voltage.  Instead, the first term on the right-hand 

side of (14) is a complicated function of both the current and the voltage. 

If we modify the network in Figure 4 so that it is the network 

illustrated in Figure 5, we shall have an example of a network containing 

a complete set of variables and we shall find a mixed potential of the 

form (IO).  Since there are two inductors and one capacitor in Figure 5, 

' 
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figure 5 

the appropriate variables to specify the dynamical behavior are  i1 ,!„> 

and v.,  and these variables form a complete set. Again,  1, = - 1. - 1„, 

and Kirchoff's Laws for this network become 

dl. di. 
L2 dt " Ll dt + h11! 

hTt=- ^i + V- 
di1 

Li IT = v4 - f(1i + 12) - 1iRi" 

(15) 

Notice that the fourth equation of this set is implied by the first and 

second equations.  Considering the last three equations of this set, we 

have a set of Independent equations for the three variables  i.,i9,  and 

v..  These equations are all differential equations which can be written 
4 

in the form (7) if we take 

*  J. -L    0 

(l1+i2) 

f(i)dl + v^(l1 + 12) (16) 
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Equation  (16)   shows  that    P    has  the  form (10)   with the  current 

potential equal  to 
(il+12) 

- |R i2 - 5 f(i)di, 
<;    x x       0 

no voltage potential term, and the remaining part being the bilinear 

function v.(l  + 1 ).  The formula (16) can be written down Immediately 

from (10) without going through (15) .  From (9) and (10),  F(i)  is 

the current potential evaluated along the resistors in the branches in 

which the current Is defined by Kirchoff's Laws alone without the 

electrical properties of the network.  In Figure 5» the current Is 

defined in all the branches but since there are resistors only in 

branches 1 and 3, we find 

(11+12) 

F(l) = - | R I2 - i      f(l)di. (17) 
0 

The voltage potential G(v)  must be evaluated along the resistors in 

the branches in which the voltage Is defined by Kirchoff's Laws alone. 

The only such branch Is 4- and since this branch has no resistance, we 

have G(v) = 0. 

The remaining part of the mixed potential Is defined in (9) as 

2  1 v |  , —--■ , (18) 
|ieN  ^T v 

where the sum is to be taken over all branches in which Kirchoff's Laws 

specify the voltage.  Again, the only such branch is />,   and since the 

current in this branch is  - (in + 1 )  and the voltage is  - v.  because 

of the assigned orientation of the branch, we find that (18) equals 
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v,(i + i ).  Combining (17) and (18), we get 

(il+i2) 

^"IVf "i      f(l)di + v^(i1 + i2), 
0 

in agreement with (16) . 

Vector Form for the Dynamical Equations 

Consider a network with a complete set of variables  i, ,...,! , 
k   ' r' 

v ..,,..,v  . Denote this set of variables by the (r + s)-component 

vector x. Let L denote the diagonal matrix whose entries are the 

inductances  L,(l),...,L (i)  and let  C denote the diagonal matrix 

whose entries are C ,n(v),...,C , (v) .  Put r+1v ''   ' r+s 

J = 

(::) 

where the zeros denote rectangular matrices whose entries are all zero. 

If a dot denotes differentiation with respect to time, we may write (7) 

in the following vector form: 

-^ = 5^1, (19) 

9P where    3—   denotes   the gradient of the   function    P. 
Ox 

Consider any solution of the  equations   (19).     This   solution is defined 

by specifying    x    as a  function of    t;  say,     x = X(t).     Note this  speci- 

fication defines  a curve    P.     Let us  consider  the way in which the mixed 

potential varies  along     P.     We have 

dP(X(t))   _ OP       dx _       / T•   • s / „„x 
dt 9^ *  dt - " <JX'X>   ' (20) 
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The  expression  on  the  right-hand  side  of (20)   Is  a  quadratic  form 

in the vector    X(t).     Suppose that    J     is  a positive-definite matrix, 

then   (20)   shows  that the value  of the mixed  potential always  decreases 

along any curve    P.     Considering  the mixed  potential as   some  kind  of 

"energy"   of the network,  we are  led to believe that, because  the  "energy" 

always  decreases,   the network must always  be stable.     This  semi-intuitive 

reasoning will be made  precise in  the next section where we discuss 

Llapunov's   Stability Theorem. 

Liapunov Stability 

Let    x    denote an  n-component vector and let     F(x)     be a  continuous 

and differentlable vector-valued  function of    x.     Consider the vector 

system of  first-order  equations 

X = F(X) • (21) 

The  equilibrium points   of this  system are  the  points     x    in n-space E 

at which     ^(x)   = 0.     An Invariant set  of (21)   Is  a set  of points  in E 

such  that if a solution  of  (21)   starts   In the invariant set at     t = 0, 

then  for all  future  time  the solution remains  In the Invariant set. It 

is  clear  that the equilibrium points  of  (2l)   form an Invariant set. 

Let V(x7" be a scalar-valued function of x with continuous first 

partial derivatives. Along any solution of (21) specified by x = X(t), 

we have 

^fiilU F(x(t)) .gradv. 
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Let us  put 

V(x)   = F(x)   •  gradV(x), 

so that 

*jimi = nxit)). (22) 

If V(x) < 0 and V(x) > 0 for some region of E   containing 

the origin, then V(x)  will be called a Liapunov function. We shall 

prove the following [3] : 

Theorem ..  Let R„ denote the region around the origin in E 
   C   " &   n 

where V(x) < C.  Suppose that R  is bounded and that inside B 

V(x) > 0  for x ^ 0,  and V(x) < 0.  Let M be the largest Invariant 

set of (21) contained in the set of points for which V(x) = 0;  then, 

every solution of (21) which starts in R  a^ t = 0 tends to M as 

t goes to infinity. 

To prove the theorem, we consider any solution X(t)  of (21) which 

is in R  at  t = 0;  therefore V(X(0)) < C.  Because of (22) and the 
0 

conditions on V(x), the value of V along this solution is non-increasing 

for all t > 0,  and V(X(t)) < C for all t > 0; we conclude that the 

solution X(t)  can never reach the boundary of R  at which V(x) = C 

and therefore  X(t)  must remain in R .  Since V(X(t))  is non-increasing 

and since V(x) > 0 for all points in R , we see that  V(X(t))  must 
u 

converge to a limit, say C.,  as  t goes to infinity. 

Let L  be the limiting set of X(t), that is, the set of points 

p in E  for which there exist an infinite sequence of positive times 
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t^jt ,...,  such that  X(t,)  converges to p as  k goes to infinity. 

Note that the limiting set must be an invariant set of (21).  For, 

suppose L.  were not an invariant set.  Then there would exist a solution 

X(t)  of (21) starting for t = 0 at a point pn in L  and such that 

X(t)  is not in L  for t > 0 and  t small enough.  Since F(x)  is 

continuously dlfferentiable, it can be approximated for x in the neigh- 

borhood of p- by F(pn) + K • (v - p )  where K is a matrix with 

■0' 
constant entries; consequently, for x near enough to pn,  the solutions 

of 

X = F(X) 

will be approximated by the solutions of 

X = F(p0) + K • (X - p0) (23) 

However, for (23), it is easy to show that a solution such as  X( t) 

cannot exist and then, by continuity, it follows that X(t)  does not 

exist for (21).  Therefore,  L  is an invariant set. 

From the preceding discussion about the limit of V(X(t))  as  t 

goes to infinity, it follows that V(x) = C   for all x in L ; 

consequently,  V = 0  on L .  Also, the set L  is in R .  Therefore, 

if M is the largest Invariant set contained in the set of points at 

which V = 0,  then M contains L ,  the limiting set of the solution 

X(t).  This result proves the theorem. 

It is useful to make a slight generalization of Theorem I as follows: 
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Theorem II.  Suppose for all x in E  that V(x) > 0 for 

x / 0 and that V(x) < 0; suppose further that Y{x) -* °°    as x -+ <»; 

then every solution of (21) tends to the set M  of Theorem I. 

The proof follows easily from Theorem I. Consider any solution 

X(t)  of (21) and suppose that V(X(0)) = C .  By the hypothesis of the 

theorem the set of points in E  such that V(x) < C = C + e,  for 

arbitrary  e > 0, is bounded.  Now, we can use Theorem I to complete the 

proof. 

Application to Networks 

From equation (20), we see that P(x)  will be a Liapunov function 

if J  is positive definite and then Theorem II could be applied to give a 

stability theorem.  In general, J is not positive definite and other 

arguments must be used.  We shall conclude with a statement of a stability 

theorem for some networks [l] . 

Notice that if J  is a matrix and P,(x)  a scalar-valued function 

such that the solutions of (19) satisfy 

9P1(X) 

- J-. X =  t.       > (24) i"   ax  ' v ^ 

then, because of linearity, the solutions of (19) satisfy all equations 

of the form 

J x  ax ' 

where 

J = aJ + ßJ1 (25) 

P = a? + ßP 



IS 

with a and ß  arbitrary constants. 

A possible choice for J-i >P-i  in (24) is the following: 

Jn = P SJ, P^ = i- grad P • S grad P, (26) 1   xx    1  2        &   J \    i 

where S is a symmetric matrix with arbitrary constants for entries. 

To see this, start from (19), namely. 

- J X = grad P , 

and multiply in front by the matrix    PS.       We get 

Jn X =  - P     SJX = P       •  S  grad P 
1 XX XX D 

but notice that 

| ^(grad P • S grad P) = | P^ * S grad P + | grad P • SP^ 

= P^ • S grad P , 

because     S    is  symmetric.     This   justifies   (26). 

We now state a theorem about the  stability of networks.     For the 

proof, we refer to  [l,page 38]. 

Theorem III.       Suppose 

P(x)   =  - |{i,Ai)   + B(v)  + i   •   (YV - a), 

where A is a constant symmetric matrix,  y is an arbitrary constant 

matrix, and a is a constant vector.  Suppose A is positive definite. 
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B(v) + |YV| "*■ "^ as  lv| -+ co, and the norm of the matrix 

L*(i)A~V-^(v) 

is less than 1-6,  with  6 > 0,  for all i,v; then, as  t-»■ «>, all 

the solutions of (19) tend to the equilibrium points, that is, the points 

at which gradP = 0. 

The idea of the proof is to find a suitable matrix S in (26) 

and suitable a  and  ß in (25) so that the conditions of Theorem II 

are satisfied.  The details are in [1]. 
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